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4.3.1 Background & Motivation

In recent years, we have observed a substantial increase in research in IR and RS. To a
large extent, this increase is fueled by progress in ML (deep learning) technology. As a
result, countless papers are nowadays published each year which report that they improved
the state-of-the-art when adopting common experimental procedures to evaluate ML based
systems. However, a number of issues were identified in the past few years regarding these
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reported findings and their interpretation. For example, both in IR and RS, studies point to
methodological issues in o�ine experiments, where researchers for example compare their
models against weak or non-optimized baselines or where researchers optimize their models
on test data rather than on held-out validation data [4, 13, 48, 53].

Besides these issues in o�ine experiments, questions concerning the ecological validity of
the reported findings are raised increasingly. Ecological validity measures how generalizable
experimental findings are to the real world. An example of this problem in information
retrieval is the known problem of mismatch between o�ine e�ectiveness measurement and
user satisfaction measured with online experimentation [10, 5, 40, 46, 56] or when the defin-
ition of relevance does not consider the e�ect on a searcher and their decision-making. For
example, the order of search results, and the viewpoints represented therein, can shift un-
decided voters toward any particular candidate if high-ranking search results support that
candidate [19]. This phenomenon – often referred to as the Search Engine Manipulation Ef-
fect (SEME) – has been demonstrated for both politics [19, 20] and health [2, 43]. By being
aware of the phenomena, methods have been adapted to measure its presence [14, 15], and
studies to evaluate when and how it a�ects human decision-makers [16]. Similar questions
of ecological validity were also raised in the RS field regarding the suitability of commonly
used computational accuracy metrics as predictors of the impact and value such systems
have on users in the real world. Several studies indeed indicate that the outcomes of o�ine
experiments are often not good proxies of real-world performance indicators such as user
satisfaction, engagement, or revenue [7, 25, 30].

Overall, these observations point to a number of open challenges in how experiment-
ation is predominantly done in the field of information access systems. Ultimately, this
leads to the questions of (i) how much progress we really make despite the large number
of research works that are published every year [4, 35, 57] and (ii) how e�ective we are
in sharing and translating the knowledge we currently have for doing IR and RS experi-
mentation [23, 45]. One major cause for the mentioned issues, for example, seems to lie
in the somewhat narrow way we tend to evaluate information retrieval and recommender
systems: primarily based on various computational e�ectiveness measures. In reality, in-
formation access systems are interactive systems used over longer periods of time, i.e., they
may only be assessed holistically if the user’s perspective (task and context) is taken into
account, cf. [36, 51, 55]. Studies on long-term impact furthermore need to consider the wider
scope of stakeholders [6, 30]. Moreover, for several types of information access systems, the
specific and potentially competing interests of multiple stakeholders have to be taken into
account [6]. Typical stakeholders in a recommendation scenario include not only the con-
sumers who receive recommendations but also recommendation service providers who for
example want to maximize their revenue through the recommendations [29, 30].

Various factors contribute to our somewhat limited view of such systems, e.g., the dif-
ficulties of getting access to real systems and real-world data for evaluation purposes. Un-
fortunately, the IR and RS research communities to a certain extent seem to have accepted
to live with the limitations of the predominant evaluation practices of today. Even more
worryingly, the described narrow evaluation approach has become more or less a standard
in the scientific literature, and there is not much debate and – as we believe – sometimes
even limited awareness of the various limitations of our evaluation practices.

There seems to be no easy and quick way out of this situation, even though some of the
problems are known for many years now [17, 5, 32, 46]. However, we argue that improved
education of the various actors in the research ecosystem (including students, educators,
and scholars) is one key approach to improve our experimentation practices and ensure
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real-world impact in the future. As will be discussed in the next sections, better training in
experimentation practices is not only important for students, but also for academic teachers,
research scholars, practitioners and di�erent types of decision-makers in academia, business,
and other organizations. This will, in fact, help address the much broader problem of
reproducibility24 and replicability 25 we face in Computer Science [12, 1] in general and in
AI in particular [26].

This chapter is organized as follows: Next, in Section 4.3.2 we briefly review which kinds
of actors may benefit from better education in information access system experimentation.
Afterwards, in Section 4.3.3, we provide concrete examples of what we can do in terms
of concrete resources and initiatives to increase the awareness and knowledge level of the
di�erent actors. Finally, in Section 4.3.4, we sketch the main challenges that we may need
to be aware of when implementing some of the described educational initiatives.

4.3.2 Actors

As in any process related to the advancement, communication, and sharing of knowledge,
knowing how to properly design and carry out correct and robust experimentation concerns
people with various di�erent roles.

This covers a broad spectrum including academia, industry, and public organizations,
e.g., from a lecturer in IR and RS introducing evaluation paradigms to undergrad students
and data scientists – not necessarily experienced in IR and RS – choosing metrics aligned to
business Key Performance Indicators (KPIs) by looking at textbooks and Wikipedia pages.
We have identified a number of actors that are involved in the education to experimentation
in information access, who are listed below. Note that this categorization is not exhaustive
nor exclusive, as actors may have multiple roles.

Students

This category embraces the di�erent stages of academic training. Starting from
students enrolled in IR & RS courses [41], including, for instance, undergraduate
students in Computer Science degrees and Master’s students in Data Science, AI,
and Human-Computer Interaction. It also includes students enrolled in a doctoral
degree, i.e., PhD students, including those jointly co-supervised with industry.

Educators

Academic roles related to education, such as course coordinators, lecturers, teaching
assistants, as well as research student supervisors.

Scholars

Researchers and academics involved in academic services, including reviewers, journal
editors, program chairs, grant writers, etc.

24
https://www.wired.com/story/machine-learning-reproducibility-crisis/

25
https://cacm.acm.org/magazines/2020/8/246369-threats-of-a-replication-crisis-in-empir

ical-computer-science/abstract

https://www.wired.com/story/machine-learning-reproducibility-crisis/
https://cacm.acm.org/magazines/2020/8/246369-threats-of-a-replication-crisis-in-empirical-computer-science/abstract
https://cacm.acm.org/magazines/2020/8/246369-threats-of-a-replication-crisis-in-empirical-computer-science/abstract
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Practitioners

Data scientists, developers, User Experience (UX) designers, and other practitioners
outside academia, that may need support in their lifelong learning.

Decision-makers

People that make strategic decisions in processes, policies, products and/or human
resources (e.g., managers in industry or policy-makers) that may benefit from having
a better understanding of IR and RS core concepts in evaluation and experimentation.

Students

Teachers & Educators

Scholars

Academia

Decision-makers
(Managers)

Practitioners

Industry

Decision-makers
(Policy-makers)

Public 
Organizations

Decision-makers
(Dean/Head)

Figure 6 Interaction among actors involved in IR and RS experimental education.

Figure 6 shows the interaction among the identified actors. In academia, students, edu-
cators, and scholars are in continuous interaction through learning, teaching, and supervision
processes, which are overseen and/or led by decision-makers such as deans, heads of depart-
ments, etc. In industry, decision-makers such as product and team managers, as well as
practitioners, make use of training and education resources and initiatives to support exper-
imentation in real-world domains. The cyclic arrows represent the active participation in
the creation and development of those resources and initiatives. Decision-makers in public
organizations, such as policy-makers, are also key actors in the definition of curricula, which
has a direct impact on how and to which extent experimentation in IR and RS is included
in Data Science, Computer Science, Computer-Human-Interaction (CHI), and AI programs.

4.3.3 What can we do?

In this section, we first provide examples of helpful resources to improve education in IR and
RS evaluation. Then, we outline several possible initiatives that contribute to increasing
awareness about current methodological issues and to disseminate knowledge about experi-
mentation approaches.
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4.3.3.1 Resources

The resources with which the actors interact are a way to share, maintain, and promote best
practices while ensuring a low barrier of entry to the field. Given that those resources might
be widely used in education, research (experimentation, etc.), and even production systems,
resources have great potential to continuously grow the knowledge of future generations of
scholars, practitioners, and decision-makers.

General Teaching Material. Textbooks quickly may become outdated,26 but have the ad-
vantage that these typically reach a wide audience, whereas slides and tutorials that cover
evaluation methodology in more depth might only reach smaller audiences. Often, today’s
online lectures primarily report on “mainstream” information retrieval (e.g., o�ine studies,
common metrics), but foster reflection and discussion only to a very limited extent. More
comprehensive resources should be made publicly available and shared across universities,
summer schools, and meetups.27 Finally, having the IR and RS community actively con-
tribute to the curation of material in sources that are widely used by the general public –
and, thus, also by students – as a starting point to get a basic understanding of a topic
(e.g., Wikipedia) is advisable. Further, contributing to the documentation of software such
as Apache Solr,28 Elasticsearch,29 Surprise,30 Implicit,31 etc. (see the report by Ferro et
al. [22] for more that are widely used in practice), can help to make non-experts more aware
of the best practices in IR and RS experimentation.

Apart from introducing modern information retrieval systems, teaching material
should give more attention to a wider set of application fields of IR, including recommender
systems and topics related to query and interaction mining and understanding, and online
learning to rank [41]. To date, also online evaluation falls short in such resources although
it is essential in the spectrum of evaluation types [41]. Students need to be introduced
to concepts such as reproducibility and replicability, and it is essential that students un-
derstand what makes a research work impactful in practice. To lower the entry barrier
to the field, students should be taught how to use available tools and environments that
enable quick prototyping, and that have real-world relevance. Teaching fairness, privacy,
and ethical aspects, both in designing experiments and also in how to evaluate them, is also
important.32

Moreover, the participation in shared tasks (challenges or competitions) of eval-
uation campaigns in IR (e.g., TREC,33 CLEF,34 NTCIR,35 or FIRE36) and RecSys (e.g.,
the yearly ACM RecSys challenges37) should be fostered. To facilitate the participation of

26 In contrast to that, the main textbook in the area of natural language processing has for years only
been available as an online draft and is continuously being updated: https://web.stanford.edu/~j

urafsky/slp3/

27 For instance, Sebastian Hofstätter released Open-Source Information Retrieval Courses: https://gi

thub.com/sebastian-hofstaetter/teaching.
28

https://solr.apache.org/

29
https://www.elastic.co/es/elasticsearch/

30
https://surpriselib.com/

31
https://implicit.readthedocs.io

32 Cyprus Center for Algorithmic Transparency (CyCAT) project: https://sites.google.com/view/bi

asvisualizationactivity/home

33
https://trec.nist.gov/

34
https://www.clef-initiative.eu/

35
https://research.nii.ac.jp/ntcir/

36
https://fire.irsi.res.in/fire/

37
https://recsys.acm.org/challenges/

https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
https://github.com/sebastian-hofstaetter/teaching
https://github.com/sebastian-hofstaetter/teaching
https://solr.apache.org/
https://www.elastic.co/es/elasticsearch/
https://surpriselib.com/
https://implicit.readthedocs.io
https://sites.google.com/view/biasvisualizationactivity/home
https://sites.google.com/view/biasvisualizationactivity/home
https://trec.nist.gov/
https://www.clef-initiative.eu/
https://research.nii.ac.jp/ntcir/
https://fire.irsi.res.in/fire/
https://recsys.acm.org/challenges/
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students, it is worthwhile to make the timelines of such challenges and competitions com-
patible with the academic (teaching) schedules (e.g., in terms of semesters). Students will
be provided with the datasets used in the benchmarks and will be able to learn more on
evaluation methodologies (for instance, students from Padua, Leipzig, and Halle particip-
ated in Touché [8, 9] hosted at CLEF). At the same time, it is important to critically reflect
with students on the limitations and dangers of competitions [11] and encourage them to
go beyond leaderboard State Of The Art (SOTA) chasing culture – e.g., only optimizing on
one metric or a limited set of metrics without reflection of the suitability of these metrics
in a given application context [50, 30]. Hence, it is important that a student’s (or student
group’s) grade does not depend on their rank in the leaderboard but to a large degree on
their approach, reasoning, and reflection to counteract SOTA chasing and help students to
focus on insights. Inspired by result-blind reviewing in Section 4.4, we might refer to this
as “result-blind grading”.

Test collections38 and runs/submissions – typically combined with novel evaluation
methodologies – are the main resources resulting from shared tasks or evaluation campaigns.
Integrating the resulting test collections into tools such as Hugging Face datasets [34],
ir_datasets [38] or EvALL [3] allows for unified access to a wide range of datasets. Further-
more, some software components such as Anserini [52], Capreolus [54], PyTerrier [39],
OpenNIR [37], etc., can directly load test collections integrated into ir_datasets which sub-
stantially simplifies data wrangling for scholars of all levels. For instance, PyTerrier allows
for defining end-to-end experiments, including significance tests and multiple-test correc-
tion, using a declarative pipeline and is already used in research and teaching alike (e.g.,
in a master course with 240 students [39]). Other resources for performance modeling and
prediction in RS, IR, and NLP can also be found in the manifesto of a previous Dagstuhl
Perspectives Workshop [22]. The broad availability of such resources makes it tremendously
easier to replicate and reproduce approaches that were submitted to a shared task (chal-
lenge) before. Further, it lowers the entry barrier to experiment with a wider set of datasets
and approaches across domains as switching between collections will be easy. New test col-
lections can be added with limited e�ort. Still, further promoting the practice of sharing
code and documentation,39 or using software submissions with tools such as TIRA [24, 44]
in shared tasks is important.

Combining and integrating the resources listed above in novel ways has the poten-
tial to reduce or even remove barriers between research and education, ultimately enabling
Humboldt’s ideal to combine teaching and research. Students who participate in shared
tasks as part of their curriculum already go in this direction [18]. Continuously maintaining
and promoting the integration of test collections and up-to-date best practices for shared
tasks into a shared resource might further foster student participants because it becomes
easier to “stand on the shoulders of giants” yielding to the cycle of education, research, and
evaluation that is streamlined by ECIR, CLEF, and ESSIR (see Section 3.14).

4.3.3.2 Initiatives

We have identified a range of actors, and we argue that addressing the problems around
education requires a number of di�erent initiatives some of which target one particular type
of actor but more commonly o�er benefits for di�erent groups. These initiatives should not

38 In IR, an o�ine test collection is typically composed of a set of topics, a document collection, and a
set of relevance judgments.

39
https://www.go-fair.org/fair-principles/
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be seen in isolation as our vision is in line with what has been proposed in Section 3.14
which calls for coordinated action around education, evaluation, and research. Here we will
discuss instruments we consider to be essential on that path. There is no particular order
in this discussion other than starting with well-established popular concepts.

Summer schools are a key instrument primarily aimed at graduate students. ESSIR40

is a prime example of a summer school focusing on delivering up-to-date educational content
in the field of IR; the Recommender Systems Summer School is organized in a similar manner
focusing on RS. Beyond the technical content, summer schools do also serve the purpose
of community-building involving di�erent actors, namely students and scholars. Annually
organized summer schools appear most e�ective as they make planning easier by integrating
them into the annual timeline of IR- and RS-related events. This is in line with the flow-wise
vision discussed earlier in Section 3.14.

Summer schools also provide a good setting to embed (research-focused) Mentoring
programs and Doctoral Consortia. This allows PhD students as well as early-career
researchers to learn from experts in the field outside their own institutions. Both instruments
are well-established in the field. However, even though the established summer schools are
repeatedly organized, these often happen on an irregular basis (sometimes yearly, sometimes
with longer breaks) and using di�erent formats. This irregular setting makes it di�cult to
integrate it into a PhD student’s journey from the outset. Currently, Mentoring is often
merely a by-product of other initiatives such as Summer Schools and Doctoral Consortia.
It may be a fruitful path to see mentoring programs as an independent (yet, not isolated)
initiative. For instance, the “Women in Music Information Retrieval (WiMIR) Mentoring
program”41 sets an example of a sustainable initiative that is organized independently of
other initiatives and on yearly basis. A similar format seems a fruitful path to follow in the
IR and RS communities, where it is advisable to facilitate exchange across (sub-)disciplines
and open up the initiative to the entire community. We note that – similar to the WiMIR –
mentoring may not only address PhD students but is well suited also for later-career stages.

While the IR and RS communities have a tradition of research-topic-driven Tutorials
as part of the main conferences, Courses that address skills and practices beyond research
topics (similar to courses hosted by the CHI conference42) would be an additional fruitful
path to follow. Such courses may, for instance, address specific research and evaluation
methods on an operational level43 or how to write better research papers for a specific outlet
or community44. With regard to support in writing better papers, see also Section 4.5.

In Bachelor and Master education, more resources in the form of Formal Educational
Materials could be developed. For example, students could benefit from The Black Mirror
Writers’ Room exercise45 which helps convey ethical thinking around the use of technology.
Participants choose current technologies that they find ethically troubling and speculate
about what the next stage of that technology might be. They work collaboratively as if they
were science fiction writers, and use a combination of creative writing and ethical speculation
to consider what protagonist and plot would be best suited to showcase the potential negative

40
https://www.essir.eu

41
https://wimir.wordpress.com/mentoring-program/

42
https://chi2023.acm.org/for-authors/courses/accepted-courses/

43 See, e.g., CHI 2023’s C12: Empirical Research Methods for Human-Computer Interaction https:

//chi2023.acm.org/for-authors/courses/accepted-courses/#C12, C18: Statistics for CHI
https://chi2023.acm.org/for-authors/courses/accepted-courses/#C18

44 See, e.g., CHI 2021’s C02: How to Write CHI Papers [42]
45

https://discourse.mozilla.org/t/the-black-mirror-writers-room/46666

https://www.essir.eu
https://wimir.wordpress.com/mentoring-program/
https://chi2023.acm.org/for-authors/courses/accepted-courses/
https://chi2023.acm.org/for-authors/courses/accepted-courses/#C12
https://chi2023.acm.org/for-authors/courses/accepted-courses/#C12
https://chi2023.acm.org/for-authors/courses/accepted-courses/#C18
https://discourse.mozilla.org/t/the-black-mirror-writers-room/46666
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consequences of this technology. They plot episodes, but then also consider what steps they
might take now (in regulation, technology design, social change) that might result in not
getting to this negative future. More experienced Bachelor students and Master students
could have assessments similar to paper reviews as part of their curriculum to practice
critical thinking.

Topically relevant Meetups ranging from informal one-o� meetings to more regular
thematically structured events o�er a much more flexible and informal way to learn about
the field. Unlike summer schools they bring together the community for an evening and cater
for a much more diverse audience involving all actors with speakers as well as attendees
from industry, academia and beyond. Talks range from specific use cases of IR in the
industry (e.g., search at Bloomberg), to the latest developments in well-established tools
(such as Elasticsearch) to user studies in realistic settings. There is a growing number
of information-retrieval-related and recommender-systems-related Meetups46 and many of
which have become more accessible recently as they o�er virtual or hybrid events. Meetups
o�er a low entry barrier in particular for students at all levels of education and they help
participants obtain a more holistic view of the challenges of building and evaluating IR and
RS applications. Loosely incorporating Meetups in the curriculum, in particular when there
is alignment with teaching content (e.g., joint seminars), has been demonstrated to be
e�ective in our own experience. These joint initiatives may go beyond the dissemination of
content, but also involve practitioners as well as decision-makers in terms of facilitating (or
hindering) strategic alliances or setting strategic themes.

Knowledge Transfer through collaboration between industry and academia is an-
other instrument o�ering a mutually beneficial collaboration between three key actors: PhD
students, academic scholars, and practitioners in the industry. By tackling real-world prob-
lems (as defined by the industrial partner) using state-of-the-art research approaches in the
fields of IR and RS (as provided by the academic partner) knowledge does not just flow in
one direction but both ways. In the context of our discussion, this is an opportunity to gain
insights into evaluation methods and concerns in the industry. There are well-established
frameworks to foster knowledge transfer such as Knowledge Transfer Partnerships47 in the
UK with demonstrated impact in IR48 and beyond.

Knowledge transfer should also be facilitated and supported at a higher level at confer-
ences and workshops. This is where the RS community is particularly successful in attracting
industry contributions to the RecSys conference series. In IR, there is still an observable
gap between key academic conferences such as SIGIR and practitioners’ events like Haystack
(“the conference for improving search relevance”49). The annual Search Solutions conference
is an example of a successful forum to exchange ideas between all di�erent actors.50

With a view to improving evaluation practices in the long-term, the reviewing process and
practices play an important role. Hence, addressing reviewers and editors is essential.
Reviewers are important actors in shaping what papers will be published and which not. And
it is essential that good evaluation is acknowledged and understood while poorly evaluated

46 See, e.g., https://opensourceconnections.com/search-meetups-map/, https://recommender-sys

tems.com/community/meetups/

47
http://ktp.innovateuk.org

48
https://www.gov.uk/government/news/media-tracking-firm-wins-knowledge-transfer-partner

ship-2015

49
https://haystackconf.com

50
https://www.bcs.org/membership-and-registrations/member-communities/information-retri

eval-specialist-group/conferences-and-events/search-solutions/
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papers are not let through. Similarly, it is crucial to have reviewers who acknowledge and
understand information retrieval and recommendation problems in their broader context
(e.g., tasks, users, organizational value, user interface, societal impact) and review papers
accordingly. Hence, it is essential to develop educational initiatives concerning evaluation
that address current and future reviewers (and editors) accordingly. Promising initiatives
include the following:

Clear reviewer guidelines acknowledging the wide spectrum of evaluation methodology
and the holistic view on information retrieval and recommendation problems. For ex-
ample, CHI51 and Association for Computational Linguistics (ACL)52 provide detailed
descriptions of what needs to be addressed and considered in a review and what steps to
take.53 Care has to be taken, though, that such guidelines are kept concise to not over-
whelm people before even starting to read. Further suggestions on results-blind reviewing
and guidance for authors can be found in Sections 4.4 and Section 4.5 respectively.
Next to reviewers, meta-reviewers and editors is another entity to address, which can
be done in a similar manner as addressing reviewers. These senior roles can have strong
momentum in inducing change – but have a strong power position in preventing it.
Stronger resistance might be expected on that (hierarchical) level. Seemingly, only a few
conferences and journals – for instance, ACL54 – seem to o�er clear guidelines for the
meta-reviewing activity.
Similar to courses on research methods or addressing paper-writing skills, it is advisable
to provide courses that specifically address how to peer review.55

Mentored reviewing is another promising initiative to have better reviews that, on the one
hand, better assess submitted papers and, on the other hand, are more constructive to
induce better evaluation practices for future research. Mentored reviewing programs are,
for instance, established in Psychology56. The MIR community57 has a New-to-ISMIR
mentoring program58 that mainly addresses paper-writing for people who are new to the
community but will likely also have an impact on reviewing practices. Similar programs
could be established in the IR and RS communities with a particular focus on evaluation
aspects. It is worthwhile to note that a recent study (in ML and AI) indicates that
novice reviewers provide valuable contributions in the reviewing process [47].
Summer schools mainly address (advanced) students and are also a good opportunity to
include initiatives addressing reviewing.

General Public Dissemination is another important aspect that needs to be ad-
dressed. Communication in the lay language of our field is very important. Editing and
curating better relevant Wikipedia pages on evaluation measures for information retrieval59

and recommender systems60 will increase the potential of reaching a wider audience, includ-
ing potential future students. Other actions can concern publishing papers in magazines

51 ACM CHI Conference on Human Factors in Computing Systems
52 Association for Computational Linguistics
53 CHI 2023 Guide to reviewing papers https://chi2023.acm.org/submission-guides/guide-to-rev

iewing-papers/; ACL’s How to Review for ACL Rolling Review https://aclrollingreview.org/r

eviewertutorial; Ken Hinckley’s comment on what excellent reviewing is [28].
54 ACL’s Action Editor Guide to Meta-Reviewing https://aclrollingreview.org/aetutorial

55
https://chi2023.acm.org/for-authors/courses/accepted-courses/#C16

56
https://www.apa.org/pubs/journals/cpp/reviewer-mentoring-program

57
https://www.ismir.net

58
https://ismir2022.ismir.net/diversity/mentoring

59
https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval) [Accessed:
20-Jan-2023]

60
https://en.wikipedia.org/wiki/Recommender_system#Evaluation [Accessed: 20-Jan-2023]

https://chi2023.acm.org/submission-guides/guide-to-reviewing-papers/
https://chi2023.acm.org/submission-guides/guide-to-reviewing-papers/
https://aclrollingreview.org/reviewertutorial
https://aclrollingreview.org/reviewertutorial
https://aclrollingreview.org/aetutorial
https://chi2023.acm.org/for-authors/courses/accepted-courses/#C16
https://www.apa.org/pubs/journals/cpp/reviewer-mentoring-program
https://www.ismir.net
https://ismir2022.ismir.net/diversity/mentoring
https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)
https://en.wikipedia.org/wiki/Recommender_system#Evaluation
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Table 3 Actors generating or consuming resources and initiatives related to education in evalu-
ation for IR and RS. Xand (X) indicate primary and secondary actors, respectively.

Actors: Students Educators Scholars Practitioners Decision-makers

Resources

Teaching Materials X X (X)
Shared tasks/challenges/competi-
tions

X X X X

Test collections & runs/submissions X X X X
Software (components) X X X X

Initiatives

Mentoring: Summer schools and
Doctoral Consortia

X X (X)

Tutorials and courses X X X
Meetups (X) (X) X X X
Joint seminars X X X (X)
Collaboration between industry
and academia

X X X

Reviewing (X) X
General public dissemination (X) (X) X X X

with a wider and di�erentiated audience, such as Communications of the ACM 61, ACM
Inroads62, ACM XRDS: Crossroads63, IEEE Spectrum64. One of the final goals is to make
IR and RS more popular to both attract students to the field and grow a healthy ecosystem
of professionals at various levels.

We have described actors, resources, and initiatives that we think are worth considering
in moving forward as a community towards creating more awareness, as well as sharing
and transferring knowledge on experimental evaluation for IR and RS. We summarize
the participation (either primary or secondary actors) in generating and consuming these
resources and initiatives in Table 3. This is not intended as a definitive list but aimed to
represent the primary and secondary actors which are involved.

4.3.4 Challenges & Outlook

Given the importance of reliable and ecologically valid results, one may ask oneself which
obstacles occur in the path of developing better education for experimentation and evaluation
of information access systems. We see di�erent potential barriers (and possibilities) for the
di�erent actors: students, educators, scholars, practitioners, and decision-makers. We will
investigate each actor in turn.

Scholars. As has also been identified in a previous Dagstuhl Seminar [22], it is significantly
harder to test the importance of assumptions in user-facing aspects of the system, such as
the presentation of results or the task model, as it is prohibitively expensive to simulate
arbitrarily many versions of a system and put them before users. User studies are therefore

61
https://cacm.acm.org/

62
https://inroads.acm.org/

63
https://xrds.acm.org/

64
https://spectrum.ieee.org/
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also at higher risk of resulting in hypotheses that cannot be clearly rejected (non-significant
results), leading to fear of criticism and rejection from paper reviewers. There are some
proponents of Equivalence Testing [33]65 and Bayesian Analysis [49] in Psychology which
may also be useful in Computer Science.

As LLMs are becoming a commodity, policies to educate and guide authors and reviewers
in how di�erent AI tools can (or cannot) be used for writing assistance should be discussed
and defined.66 These guidelines may inspire educators on how to characterize the role of
these tools in learning & teaching environments, including assessment design and plagiarism
policies67.

In addition, a current culture of ‘publish or perish’ incentivizes short-term and incre-
mental findings68, over more holistic thinking and thoughtful comparative analysis. The
problem of ‘SOTA-chasing’ has also been discussed in other research areas, e.g., in NLP
[11]. Change in academic incentive systems both within institutions and for conferences and
journals change slowly but they do evolve.

Students and Educators. Thankfully, institutions are increasingly recognizing the need for
reviewing studies before they are performed, such as Ethics and Data Management plan69.
In Bachelor and Master education, in particular, this means that instructors may require
training in writing such documents, and institutions appreciate and are equipped for timely
review. Therefore, planning of education would benefit from allowing su�cient time for
submission, review, and revision.

In that context, teaching evaluation methodologies may require some colleagues to re-
train, in which case some resistance can be expected. Improving access to training initiatives
and materials at post-graduate level can support colleagues who are willing but need addi-
tional support. Various forms of informal or even organized exchange between teachers may
be a helpful instrument to grow the competency of educators.

Furthermore, certain evaluation concepts and methodologies cannot be taught before
certain topics are covered in the curriculum. A student in recommender systems may need
to understand the di�erence between a classification and regression problem; or the di�erence
between precision and recall (for a given task and user it may be more important to retrieve
accurate results, or to retrieve a wider range of results) before they can start thinking about
the social implications.

Moreover, some students are prone to satisfice, thinking that “good enough is good
enough”: there are many methodologies available for evaluation, and the options are di�cult
to digest in a cost-e�ective way at entry-level – highlighting the need for availability of
tutorials and low-entry level materials as indicated earlier in Section 4.3.3. Embedding
participation to shared tasks and competitions (e.g., CLEF labs or TREC tracks) which
provide a common framework for robust experimentation may help overcome this challenge
– although the synchronization between the semester and participation timelines may not
be straightforward.

65 See also https://cran.r-project.org/web/packages/TOSTER/TOSTER.pdf

66 For instance, see the ACL 2023 Policy on AI Writing Assistance: https://2023.aclweb.org/blog/A

CL-2023-policy/.
67

https://www.theatlantic.com/technology/archive/2022/12/chatgpt-ai-writing-college-stu

dent-essays/672371/

68
https://harzing.com/resources/publish-or-perish

69 Further proposals for methodological review are also under discussion in Psychology, but will likely
take longer to reach Computer Science: https://www.nature.com/articles/d41586-022-04504-8

https://cran.r-project.org/web/packages/TOSTER/TOSTER.pdf
https://2023.aclweb.org/blog/ACL-2023-policy/
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Christine Bauer, Ben Carterette, Nicola Ferro, Norbert Fuhr 127

Finally, there is a growing number of experiments in developing multi-disciplinary cur-
ricula – with the appreciation that di�erent disciplines bring to such a program. Successful
initiatives include group projects consisting of students in both Social Sciences and Humanit-
ies (SSH) and Computer Science. In fact, one of the underlying principles of the continuously
growing iSchools consortium70 is to foster such interdisciplinarity. The challenge here is not
only the design of the content but also accreditation and support from the strategic level of
institutions.

Practitioners. Maintenance of resources used to translate knowledge about models and
methodologies for evaluation is challenging given the fast pace of the field. This can make
it hard to compare results across studies and to keep up with the SOTA of best practices in
experimentation. In this regard lowering the entry barrier to participating in initiatives such
as shared tasks/challenges [21, 27] and maintaining documentation of resources commonly
used by non-experts are increasingly helpful.

Another issue is the homogeneity of actors. Often there is no active involvement of actors
outside a narrow academic Computer Science sphere, who otherwise might have indicated
assumptions or limitations early on. It can be challenging to set up productive collaborations
between industry and academia, as well as across disciplines. Typical issues include, for
instance, common terminology used in a di�erent way, or di�erent levels of knowledge of key
performance indicators. Co-design in labs has set a good precedent in this regard. Examples
are ICAI in the Netherlands71, its extension in the new 10-year ROBUST initiative72, and the
Australian Centre of Excellence for Automated Decision-Making and Society (ADM+S)73,
where PhDs in multiple disciplines (Social Sciences & Humanities, Computer Science, Law,
etc.) are jointly being trained in shared projects.

Research Advisory Boards are another e�ective instrument to draw in practitioners but
here the challenge is to make the most of the little time that is usually available for the
exchange of ideas between practitioners and academics.

Decision-makers. The output of evaluation and experimentation in IR and RS may be used
to inform decision-making on the societal level. Consequently, if the evaluation is poorly
done, or the results incorrectly generalized, the implications may also be poor decision-
making with far-reaching impacts on society, e.g. [31, Ch. 10].

The ability of the other actors to support education on evaluation is constrained and
shaped by decision-makers. Policy-makers in public organizations and program managers or
deans in academia play a crucial role in curriculum design. Scholars and educators will have
to communicate e�ectively the importance of experimental evaluation in information access
in order to inform the decision-making process. The challenge here is to initiate change
in the first place and to drive such changes. Any new initiative will necessarily involve
not just a single decision-maker but more stakeholders and committees making this a more
e�ortful but possibly also more impactful process than many of the other initiatives we have
identified.

Additionally, decision-makers within academic institutions, namely libraries and career
development centres, can play an important role towards developing the competency of
students and educators. Making best practices in evaluation available as a commodity
through these channels will require making resources more accessible for non-experts in IR
and RS.

70
https://www.ischools.org

71
https://icai.ai/

72
https://icai.ai/ltp-robust/

73
https://www.admscentre.org.au/
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4.3.5 Concluding Remarks

Education and dissemination represent key pillars to overcoming methodological challenges
in Information Retrieval and Recommender Systems. What we have sketched here can be
interpreted as a general roadmap to create more awareness among and beyond the IR and
RS communities. We hope the recommendations – and the identified challenges to consider –
on what we can do will help to support education for better evaluation in the di�erent stages
of the lifelong learning journey. We acknowledge that facets such as incentive mechanisms
and processes in institutions are often slow-moving. The vision proposed in this section is
therefore also aimed at a longer-term (5–10 years) perspective.
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4.4.1 Motivation

Campbell and Stanley defined experiments as “that portion of research in which variables
are manipulated and their e�ects upon other variables observed” (p. 1 in [1]).” Scientific
experiments are used in confirmatory research to test a priori hypotheses as well as in
exploratory research to gain new insights and help to generate hypotheses for future research
[7]. In information access research, the ultimate goal is to gain insights into cause and e�ect.
Unfortunately, many reviewers of information access experiments place undue emphasis
on performance, rejecting papers that contain insights if they fail to show improvements
in performance. The focus on performance numbers not only leads to publication bias.
It also puts additional pressure on early-career researchers who must publish or perish,
thus being tempted to cheat if their proposed method does not yield the desired results.
Moreover, reviewers pay little attention to the experimental methodology and analysis [4]
in case the results are impressive. Focusing primarily on performance (and in particular
aggregated performance) can lead to a neglect of insights; gaining insights is critical to move
the information access field forward and essential to be able to make performance predictions
[2].

We think that one important step to change the situation is if we alter the review
process such that there is more emphasis on the theoretical background, the hypotheses, the
methodological plan and the analysis plan of an experiment, while improvement or decline of
performance should play less of a role when deciding about the quality of a paper. It is hoped
that this will lead to a higher scientific quality of publications, more insights, and improved
reproducibility (as there is less incentive for beautifying results). As Woznyj et al. [8]
note in their survey of editorial board members, overall there are positive attitudes towards
results-blind reviewing and advantages for the scientific community outweigh concerns.

In order to move the review focus away from performance improvement, appealing to
reviewers alone will not be su�cient. A more drastic measure is the change of the review
process such that reviewers decide about acceptance vs. rejection of a paper without knowing
the outcome of the experiments described.
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